Yoshie, you're making me laugh here. Do you really wish to compare the accomplishments of the Israeli's versus the Iranians? How long has Israel had the atomic bomb, Yoshie? How long has Iran had it? Oh.
Science and technology in Israel is one of the country's most developed sectors. The percentage of Israelis engaged in scientific and technological inquiry, and the amount spent on research and development (R&D) in relation to gross domestic product (GDP), is amongst the highest in the world. Israel ranks fourth in the world in scientific activity as measured by the number of scientific publications per million citizens. Israel's percentage of the total number of scientific articles published worldwide is almost 10 times higher than its percentage of the world's population.
Israeli scientists have contributed to the advancement of agriculture, computer sciences, electronics, genetics, medicine, optics, solar energy and various fields of engineering. Israel is home to major players in the high-tech industry and has one of the world's most technologically-literate populations. In 1998, Tel Aviv was named by Newsweek as one of the ten most technologically influential cities in the world.
The country’s lack of conventional energy sources has spurred extensive research and development of alternative energy sources and Israel has developed innovative technologies in the solar energy field.[18] Israel has become the world's largest per capita user of solar water heaters in the home. A new, high-efficiency receiver to collect concentrated sunlight has been developed, which will enhance the use of solar energy in industry as well.
In a 2009 report by the CleanTech Group, Israel ranked among the top 10 clean tech countries in the world, behind Denmark, Germany, Sweden and the United Kingdom.
The Arrow Ecology company has developed the ArrowBio process a patented system which takes trash directly from collection trucks and separates organic and inorganic materials through gravitational settling, screening, and hydro-mechanical shredding. The system is capable of sorting huge volumes of solid waste, salvaging recyclables, and turning the rest into biogas and rich agricultural compost. The system is used in California, Australia, Greece, Mexico, the United Kingdom and in Israel. For example, an ArrowBio plant that has been operational at the Hiriya landfill site since December 2003 serves the Tel Aviv area, and processes up to 150 tons of garbage a day.
According to water experts, pipe leakage is one of the major problems confronting the global water supply today. For Israel, which is two-thirds desert, water-saving technologies are of critical importance. The International Water Association has cited Israel as one of the leaders in innovative methods to reduce "nonrevenue water," i.e., water lost in the system before reaching the customer.
During the 1970s and 1980s Israel began developing the infrastructure needed for research and development in space exploration and sciences. In November 1982, the Minister of Science and Technology, Prof. Yuval Ne'eman, established the Israel Space Agency (ISA), to coordinate and supervise a national space program. Because of geographical constraints, as well as safety considerations, the Israeli space program focuses on very small satellites loaded with payloads of a high degree of sophistication, and cooperation with other national space agencies.
Israel launced its first satellite, Ofeq-1, from the locally built Shavit launch vehicle on September 19, 1988 and has made important contributions in a number of areas in space research, including laser communication, research into embryo development and osteoporosis in space, pollution monitoring, and mapping geology, soil and vegetation in semi-arid environments.
Key projects include the TAUVEX telescope, the Tel Aviv University Ultra Violet Experiment, a UV telescope for astronomical observations which was developed in the 1990s to be accommodated on an Indian Space Research Organization (ISRO) geo-synchronous satellite GSAT-4, for joint operation and use by Indian and Israeli scientists; the VENUS micro-satellite, developed in collaboration with the French space agency, CNES, which will use an Israeli-developed space camera, electric space engine and algorithms; and MEIDEX (Mediterranean - Israel Dust Experiment), in collaboration with NASA.
Ilan Ramon was Israel's first astronaut. Ramon was the space shuttle payload specialist onboard the fatal STS-107 mission of Space Shuttle Columbia, in which he and the six other crew members were killed in a re-entry accident over the southern United States. Ramon had been selected as a Payload Specialist in 1997 and trained at the Johnson Space Center, Houston, Texas, from 1998 until 2003. Among other experiments, Ramon was responsible for the MEIDEX project in which he was required to take pictures of atmospheric aerosol (dust) in the Mediterranean area using a multispectral camera designed to provide scientific information about atmospheric aerosols and the influence of global changes on the climate, and data for the Total Ozone Mapping Spectrometer (TOMS) and Moderate-Resolution Imaging Spectroradiometer (MODIS) instruments. Researchers from Tel Aviv University (TAU) were responsible for the scientific aspect of the experiment. The TAU team also worked with a US company, Orbital Sciences Corporation, to construct and test special flight instruments for the project.
In 2009 Israel was ranked among the 20 top countries in space sciences research by the Thomson Reuters agency.
Aerospace engineering related to the country's defense needs has generated technological development with consequent civilian spin-offs. The Arava short take-off and landing (STOL) plane manufactured by Israel Aerospace Industries was the first aircraft to be produced in Israel, in the late 1960s, for both military and civilian uses. This was followed by the production of the Westwind business jet from 1965–1987, and later variants, the Astra and the Gulfstream G100, which are still in active service.
Israel is among the few countries capable of launching satellites into orbit and locally designed and manufactured satellites have been produced and launched by Israel Aerospace Industries (IAI), Israel's largest military engineering company, in cooperation with the Israel Space Agency. The AMOS-1 geostationary satellite began operations in 1996 as Israel's first commercial communications satellite. It was built primarily for direct-to-home television broadcasting, TV distribution and VSAT services. AMOS-2 was launched in December 2003 and a further series of AMOS communications satellites (AMOS 2 - 5i) are operated or in development by the Spacecom Satellite Communications company, headquartered in Ramat-Gan, Israel. Spacecom provides satellite telecommuncations services to countries in Europe, the Middle East and Africa. Another satellite, the Gurwin-II TechSAT, designed and manufactured by the Technion, was launched in July 1998 to provide communications, remote sensing and research services. EROS, launched in 2000, is a non-geostationary orbit satellite for commercial photography and surveillance services.
Israel also develops, manufactures, and exports a large number of related aerospace products, including display systems, aeronautical computers, instrumentation systems, drones and flight simulators. Israel's second largest defense company is Elbit Systems, which makes electro-optical systems for air, sea and ground forces; drones; control and monitoring systems; communications systems and more.
Israel’s agricultural sector is characterized by an intensive system of production stemming from the need to overcome the scarcity in natural resource, particularly water and arable land, in a country where more than half of its area is desert. The growth in agricultural production is based on close cooperation of scientists, farmers and agriculture-related industries and has resulted in the development of advanced agricultural technology, water-conserving irrigation methods, anaerobic digestion, greenhouse technology, desert agriculture and salinity research. Israeli companies also supply irrigation, water conservation and greenhouse technologies and know-how to other countries.
The modern technology of drip irrigation was invented in Israel by Simcha Blass and his son Yeshayahu. Instead of releasing water through tiny holes, blocked easily by tiny particles, water was released through larger and longer passageways by using velocity to slow water inside a plastic emitter. The first experimental system of this type was established in 1959 when Blass partnered with Kibbutz Hatzerim to create an irrigation company called Netafim. Together they developed and patented the first practical surface drip irrigation emitter. This method was very successful and had spread to Australia, North America and South America by the late 1960s.
Israeli farmers rely heavily on greenhouse technology to ensure a constant, year-round supply of high quality produce, while overcoming the obstacles posed by adverse climatic conditions, and water and land shortages. Technologies include computerized greenhouse climate control, greenhouse shading, irrigation, greenhouse water recycling and biological control of plant disease and insects, allow farmers to control most production parameters. As a result, Israeli farmers successfully grow between 3.5 and 4.5 million roses per hectare in season and an average of 400 tons of tomatoes per hectare, four times the amount harvested in open fields.
Computer engineering
Israel's Weizmann Institute of Science and the Technion – Israel Institute of Technology are ranked among the top 20 academic institutions in the world in computer science.
Israeli companies excel in computer security technologies, semiconductors and communications. Israeli firms include Check Point, a leading firewall firm; Amdocs, which makes business and operations support systems for telecoms; Comverse, a voice-mail company; and Mercury Interactive, which measures software performance. A high concentration of high-tech industries in the coastal plain of Israel has led to the nickname Silicon Wadi (lit: "Silicon Valley"). Both Israeli and international companies are based there.
Intel and Microsoft built their first overseas research and development centers in Israel, and other high-tech multi-national corporations, such as IBM, Cisco Systems, and Motorola, have opened facilities in the country. Intel developed its dual-core Core Duo processor at its Israel Development Center in Haifa.
Optics, electro-optics, and lasers are significant fields and Israel produces fiber-optics, electro-optic inspection systems for printed circuit boards, thermal imaging night-vision systems, and electro-optics-based robotic manufacturing systems.
Research into robotics first began in the late 1970s, has resulted in the production of robots designed to perform a wide variety of computer aided manufacturing tasks, including diamond polishing, welding, packing, and building. Research is also conducted in the application of artificial intelligence to robots.
An Israeli, CEO and president of M-Systems, Dov Moran, invented the first flash drive in 1998.
More than 3,850 start-ups have been established in Israel, making it second only to the US in this sector and has the largest number of NASDAQ-listed companies outside North America.
Hydraulic engineering
Because rain falls only in the winter, and largely in the northern part of the country, irrigation and water engineering is vital to the country's economic survival and growth. Large scale projects to direct water from rivers and reservoirs in the north, to make optimal use of groundwater, and to reclaim flood overflow and sewage have been undertaken. The largest such project was a national water distribution system called the National Carrier, completed in 1964, flowing from the country's biggest freshwater lake, the Sea of Galilee, to the northern Negev desert, through huge channels, pipes and tunnels.
The Ashkelon seawater reverse osmosis (SWRO) desalination plant was the largest in the world at the time it was built. The project was developed as a BOT (Build-Operate-Transfer) by a consortium of three international companies: Veolia water, IDE Technologies and Elran.
Military engineering
Plasan Sand CatRejection of requests for weapons and technologies, arms sanctions and massive rearmament of the Arab countries prodded Israel into the development of a broad-based indigenous arms industry. The Israel Defense Forces relies heavily on local military technology and high-tech weapons systems designed and manufactured in Israel. Israeli-developed military equipment includes small arms, anti-tank rockets and missiles, boats and submarines, tanks, armored vehicles, artillery, unmanned surface vehicles, aircraft, unmanned aerial vehicles (UAVs), air-defense systems, weapon stations and radar.
An impetus for the development of the industry was the embargo on arms sales to Israel during the Six-Day War which prompted Israel Aircraft Industries (IAI), founded as a maintenance facility in 1953, to begin developing and assembling its own aircraft, including the Kfir, the Arava and the Nesher.
Notable technology includes the Uzi submachine gun, introduced in 1954,[56] the country's main battle tank, the Merkava, and the jointly designed Israeli and U.S.Arrow missile, one of the world's only operational, advanced anti-ballistic missile systems.[57]
Israel has also developed a network of reconnaissance satellites. The Ofeq (lit. Horizon) series (Ofeq 1 - Ofeq 7) were launched between 1988 and 2007. The satellites were carried by Shavit rockets launched from Palmachim Airbase. Both the satellites and the launchers were designed and manufactured by Israel Aerospace Industries (IAI), with Elbit Systems' El-Op division supplying the optical payload.
Health sciences
Israel has an advanced infrastructure of medical and paramedical research and bioengineering capabilities. Biotechnology, biomedical, and clinical research account for over half of the country's scientific publications, and the industrial sector has used this extensive knowledge to develop pharmaceuticals, medical equipment and treatment therapies.
Medicine and genetics
Israeli scientists have developed methods for producing a human growth hormone and interferon, a group of proteins effective against viral infections. Copaxone, a medicine effective in the treatment of multiple sclerosis, was developed in Israel from basic research to industrial production. Genetic engineering has resulted in a wide range of diagnostic kits based on monoclonal antibodies, with other microbiological products.
Advanced stem cell research takes place in Israel. The first steps in the development of stem cell studies occurred in Israel, with research in this field dating back to studies of bone marrow stem cells in the early 1960s. By 2006, Israeli scientists were leaders on a per capita basis in the number of articles published in scientific journals related to stem cell research.
Biomedical engineering
Sophisticated medical equipment for both diagnostic and treatment purposes has been developed and marketed worldwide, such as computer tomography (CT) scanners, magnetic resonance imaging (MRI) systems, ultrasound scanners, nuclear medical cameras, and surgical lasers. Other innovations include a controlled-release liquid polymer to prevent accumulation of tooth plaque, a device to reduce both benign and malignant swellings of the prostate gland, the use of botulin to correct eye squint, and a miniature camera encased in a swallowable capsule used to diagnose gastrointestinal disease, developed by Given Imaging.
In 2009, scientists from several European countries and Israel developed a robotic prosthetic hand, called SmartHand, which functions like a real one, allowing patients to write with it, type on a keyboard, play piano and perform other fine movements. The prosthesis has sensors which enable the patient to sense real feeling in its fingertips. A new MRI system for identifying and diagnosing tumors developed at the Weizmann Institute has received approval from the U.S. Food and Drug Administration and is already being used in diagnosing breast and testicular cancer. The new system will replace invasive procedures and eliminate waiting time for the results.
Pharmaceuticals
Teva Pharmaceutical Industries, headquartered in Petah Tikva, Israel, is the largest generic drug manufacturer in the world and one of the 20 largest pharmaceutical companies worldwide. It specializes in generic drugs and active pharmaceutical ingredients and has developed proprietary pharmaceuticals such as Copaxone and Laquinimod for the treatment of multiple sclerosis, and Rasagiline for the treatment of Parkinson's disease.
Scientific research institutions
Israel has seven research universities: Bar-Ilan University, Ben-Gurion University of the Negev, the University of Haifa, Hebrew University of Jerusalem, the Technion – Israel Institute of Technology, Tel Aviv University and the Weizmann Institute of Science, Rehovot. Other scientific research institutions include the Volcani Institute of Agricultural Research in Beit Dagan, the Israel Institute for Biological Research and the Soreq Nuclear Research Center. The Ben-Gurion National Solar Energy Center at Sde Boker is an alternative energy research institute established in 1987 by the Ministry of National Infrastructures to study alternative and clean energy technologies.
Israeli universities are ranked among the top 100 academic institutions in the world in the following scientific disciplines: in physics (Hebrew University, Weizmann Institute of Science and Tel Aviv University); in chemistry (the Technion, Tel Aviv University and Hebrew University); in computer science (Weizmann Institute of Science and the Technion - in the top 20, Tel Aviv University, Hebrew University, and Bar Ilan University); in mathematics and natural sciences (the Technion, Hebrew University, Tel Aviv University and Weizmann Institute of Science); in engineering (Technion); in life sciences (Hebrew University).
Research conducted at Israeli universities and institutes is shared with the private sector through technology transfer (TT) units. Israel's first university TT unit, YEDA, established by the Weizmann Institute of Science in the 1950s, is still operational today. Research in such fields as arid and semi-arid zone agricultural engineering is transferred to kibbutzim and private farmers on a gratis basis, and agricultural knowledge is shared with developing countries.
Nobel prize laureates
Three Israelis have won the Nobel Prize for Chemistry: In 2004, biologists Avram Hershko and Aaron Ciechanover of the Technion shared the prize, and in 2009, it was won by Ada Yonath of the Weizmann Institute of Science. Additionally, the 1958 Medicine laureate, Joshua Lederberg, was born to Israeli Jewish parents, and 2004 Physics laureate, David Gross, grew up partly in Israel, where he obtained his undergraduate degree. In the social sciences, the Nobel Prize for Economics was awarded to Daniel Kahneman in 2002, and to Robert Aumann of the Hebrew University in 2005.