BASEMENT FAMILY FALLOUT SHELTERS[I have found this plan in an old book I think it is usefull to protect our families in the worst case]
| The effects of nuclear weapons in causing death and injury are divided into two phases : 1. In the vicinity of a nuclear detonation, nearly all life would be destroyed by blast, thermal effects -and prompt nuclear radiation. Only people who were secure in strong blast-proof shelters would have any chance of survival. This area of devastation would extend many miles with the largest weapons. 2. In a much larger area beyond this, there would be widespread death and injury over a period of days or weeks as a result of radioactive fallout. This area could extend for hundreds of miles. While it is extremely difficult to protect against close-by effects of nuclear detonation, it is entirely feasible to protect against radioactive fallout. The designs illustrated are intended for fallout protection only. The Compact Basement Fallout Shelter and the Basement Family Shelter Room presented herein are designed specifically as do-it-yourself projects. Concrete blocks, concrete plank, cement mortar and concrete are used. These materials are simple to assemble for those people who have previously worked with them, but some will need the assistance of a contractor to build the shelter. The selection of the materials and cost have been kept to a minimum while providing the shielding mass necessary for fallout protection. |
THE NEED FOR SHELTERSThe dangers of radioactive fallout and the need for shelters were well stated by Keith S. Mc Hugh, Chairman of the Committee on Fallout Protection, State of New York, in his report to Governor Nelson A. Rockefeller. His opening statement in this report was : "It is unthinkable, that we should continue in our present state of almost complete civilian unpreparedness against nuclear attack. It is unthinkable because we do not need to remain unprepared. We can construct a shield that will save many millions of our people, assure our survival as a nation and preserve our American institutions and way of life. We can do this by protecting ourselves from radioactive fallout that would blanket our land following a full scale nuclear attack."
This material mingles with fission products and as a result there is formed upon cooling a tremendous number of particles, most of which are radioactive. These particles vary in size from fine powder to large grains. Radioactive particles which fall back to earth are the dangerous fallout.
It is not possible to predict accurately where fallout will be deposited. The size and position of the weapon and the weather conditions will determine the fallout pattern. Winds may carry the particles many miles. Significant amounts of fallout do not arrive outside the blast area earlier than about one hour after blast. This period will allow people to seek shelter before fallout accumulates in dangerous amounts.
From the time of their formation when the nuclear explosion occurs, fission products begin to decay; that is, their radioactivity decreases. The rate of decay is extremely rapid shortly after the explosion. For example, the dose rate after seven hours is approximately one-tenth of the dose rate at one hour after the explosion and it is one-hundredth after two days. The rate of decay continues at a materially reduced rate after the first two days. The time of greatest danger, therefore, is in the first two or three days after the burst.
PROTECTIONShelters are designed to reduce the amount of radiation, and thereby protect life and health.
Any mass of material between a person and the fallout particles will reduce the amount of radiation reaching that person. Sufficient mass will make the person safe.
Concrete, concrete blocks, bricks, earth or sand, are some of the materials heavy enough to afford protection by absorbing radiation. There is about the same amount of shielding in 8 inches of concrete, for instance, as in 12 inches of earth or sand.
BASEMENT FAMILY SHELTERSMost basements in dwellings afford nominal protection because of the shielding effect of the ground and the materials in the construction. The degree of protection will depend upon the level of the grade on the exterior of the basement and the materials used in the construction. Since the level of grade is a crucial factor, shelters are designed for various grade conditions.
A corner of the basement is the preferred shelter location since existing foundation walls form two sides of the shelter. It is important in the use of the design of the shelters illustrated to note that the grade, outside the perimeter of the shelter should not be lower than the shelter ceiling. I f the shelter ceiling is above ground the shelter walls must be designed for this circumstance.
The term "protection factor" is used to designate the relative protection value of a shelter. For example, if the dose rate of radiation on the outside is 1500 Roentgens per hour and a shelter has a protection factor of 100, the dose rate within the shelter is 15 Roentgens per hour. The dose rate of radiation is reduced 100 times. For survival, it has been established that the protection factor should be a minimum of 100. The shelters illustrated have been designed for a protection factor of 100 on the basis of the construction and location noted.
The protection factor can be increased by filling in the voids of the hollow concrete blocks solidly with cement mortar or substituting solid concrete blocks. Any increase in the thickness of the materials shown will also increase the protection factor.
A shelter is essential for survival, particularly in the first two or three days after a nuclear explosion when the level of radiation is highest. Even though radioactivity of fallout decays rapidly at first and the shelter affords a protection factor of 100, the intensity of radiation should be checked by radiation meters and contact maintained by radio or other means with Civil Defense authorities to determine when it would be safe to leave the shelter.
SHELTER DESIGNSThe shelter designs illustrated are of two types. The Compact Basement Family Shelter and the Basement Family Shelter Room. They are based on the minimum for survival and can be built as a do-it-yourself project. The materials are available from local dealers. Additional comforts can be included to meet an individual's personal desires.
4'-O" COMPACT BASEMENT FAMILY SHELTER
This shelter is designed for conditions where the grade outside is only 3'-0" to 4'-0" above the basement floor level, and for minimum cost. It is necessary in this shelter that the exterior grade be not lower than the underside of the shelter ceiling. If the grade is lower, earth must be mounded up to the 4'-0" level around the exterior of the basement to shield that portion of the exterior walls forming the shelter.
The basic interior dimensions of 6'-0" wide x 5'-4" long for two people can be lengthened in multiples of 2'-0" to provide room for each additional person. The "baffle" area at the entrance is an unprotected part of the shelter and cannot be counted for occupancy.
After the period of high radiation intensity (the first two or three days after a detonation) , it may be possible, if radiation intensities are sufficiently reduced, for occupants to leave the shelter and go into the basement area for very short periods for hygienic reasons, to procure additional food, water, etc.
There are two types of construction for the ceiling. The first type, which is illustrated, requires a 6" stone concrete slab on top of the 2" x 16" concrete plank. The second type is two layers of solid concrete block on top of the concrete plank similar to the construction illustrated for the Basement Family Shelter Room.
The approximate costs of materials of the fallout shelter with the concrete top are from $60 to $70 for the 5'-4" long x 6'-0" wide size up to a cost of $105 to $115 for the 11'-4" long x 6'-0" wide size.
The estimate is for materials of the fallout shelter only. The cost of equipment, instruments, furnishings, etc., is not included. The estimates are based on prices of January 1960. All other estimates for fallout shelters are given on a similar basis.
4'-8" COMPACT BASEMENT FAMILY SHELTERThis shelter is similar in design to the 4'-0" Basement Family Shelter, except that it provides a 4'-8" clear interior headroom and can be used when the grade is 4'-8" or higher above the basement floor.
The approximate costs of materials of this fallout shelter with the concrete top are from $70 to $80 for the 5'-4" long x 6'-0" wide size up to a cost of $115 to $125 for the 11'-4" long x 6'-0" wide size.
BASEMENT FAMILY SHELTER ROOMThe Basement Family Shelter Room is designed with a 6'-0" headroom. It assumes an existing height of 7'-0". The dimensions can vary from a basic size of 5'-4" long x 6'-0" wide to the six person shelter shown of an 11'-4" long x 6'-0" wide size. The 6'-0" headroom makes it possible to install a double bunk and other comforts.
Since this shelter is built directly under the existing floor construction, it is usually not practicable to pour a concrete slab for the ceiling. The ceiling is, therefore, designed of dry construction with concrete plank and solid concrete block units laid closely together.
The approximate costs of materials of this shelter are from $95 to $105 for the 5'-4" long x 6'-0" wide size up to a cost of $145 to $160 for the 11'-4" long x 6'-0" wide size.
The Basement Family Shelter Room is designed for a grade at or above the shelter ceiling. Where the grade is below the ceiling of the shelter, the grade may be raised to this level by banking earth against the foundation wall or by building a retaining wall a few feet away from the foundation and backfilling with earth as a planting strip
Window wells must be filled with earth when they are located in the shelter area.
If it is not feasible to raise the grade, then the wall mass of the Basement Family Shelter Room must be increased as shown in the accompanying drawings. For a 5'-0" grade condition ( grade 1'-0" below the shelter ceiling) the enclosing walls of the shelter must be changed to solid concrete block or the voids of the hollow concrete blocks should be filled solidly with cement mortar. The concrete blocks against both exterior foundation walls should be 8" thick. The exposed foundation wall above the grade must be shielded with solid blocks or blocks filled solidly with mortar.
For a 4'-0" or 3'-0" grade condition, assuming 8" foundation walls, the enclosing shelter walls must be 12" hollow concrete block filled solidly with mortar, with 12" block walls against both of the exterior foundation walls and the blocks above the grade filled solidly with mortar.
SPECIAL CONDITIONSShelters are designed for various basement grade conditions. The protection factors are based on basements with foundation walls of 8" of concrete or concrete blocks and a normal number and size of window openings. When the grade is less than 3'-0" above the shelter floor or when the number and size of window openings are excessive the protection factor will be considerably reduced due to the increased effect of ground plane radiation. Advice should be obtained for the design of fallout shelters for conditions other than presented herein.
VENTILATIONWhen there is good natural ventilation in the basement, ventilation for the shelter is provided by the open entrance. A blower may be installed to increase comfort. If natural ventilation in the basement is inadequate, then mechanical ventilation should be installed to provide not less than three cubic feet of fresh air per minute per person. This can be accomplished with a centrifugal blower with a hand crank. Air is safe to breathe and is not poisoned by fallout; only the fallout particles are dangerous.
RADIORadio reception is essential to maintain contact with Civil Defense authorities. Shelter should be equipped with a battery powered radio. Reception should be checked and if the signal is weak, an outside antenna may be necessary.
SANITATIONSanitary facilities should be provided of a chemical type waste receptacle or disposable plastic containers.
LIGHTINGLighting should be a battery powered lantern with spare batteries for a period of two weeks. Electric fixture and convenience outlet are desirable for greater comfort as electric power may be available in many areas.
WATERWater requirements are a minimum of one quart of water per person per day. It is recommended
40 that an additional quart per day be available for hygienic purposes. Water can be stored in any container that is properly capped and sealed.
FOODFood supply for each occupant should be provided for a two week period. This should consist of various forms of concentrated and balanced emergency rations to provide about 2,000 calories per person per day.
RADIATION INSTRUMENTSRadiological instruments to measure the accumulated radiation received by individuals and to measure the radiation dose rate should be provided. These instruments would indicate the total amount of radiation a person receives during the emergency and permit him to check the diminishing intensities of radiation on succeeding days and help guide activities in and around the shelter as conditions improve.